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Sparsest Random Scheduling for Compressive Data
Gathering in Wireless Sensor Networks

Xuangou Wu, Yan Xiong, Panlong Yang, Member, IEEE, Shouhong Wan, and Wenchao Huang

Abstract—Compressive sensing (CS)-based in-network data
processing is a promising approach to reduce packet transmission
in wireless sensor networks. Existing CS-based data gathering
methods require a large number of sensors involved in each CS
measurement gathering, leading to the relatively high data trans-
mission cost. In this paper, we propose a sparsest random schedul-
ing for compressive data gathering scheme, which decreases each
measurement transmission cost from O (V) to O(log(IN)) with-
out increasing the number of CS measurements as well. In our
scheme, we present a sparsest measurement matrix, where each
row has only one nonzero entry. To satisfy the restricted isometric
property, we propose a design method for representation basis,
which is properly generated according to the sparsest measure-
ment matrix and sensory data. With extensive experiments over
real sensory data of CitySee, we demonstrate that our scheme can
recover the real sensory data accurately. Surprisingly, our scheme
outperforms the dense measurement matrix with a discrete cosine
transformation basis over 5 dB on data recovery quality. Simula-
tion results also show that our scheme reduces almost 10X energy
consumption compared with the dense measurement matrix for
CS-based data gathering.

Index Terms—Wireless sensor networks, in-network compres-
sion, compressive sensing, restricted isometry property, energy
efficiency.

1. INTRODUCTION

IRELESS SENSOR NETWORKSs (WSNs) have been

proved to be a powerful tool for long time natural
environment monitoring [8], [36]. Many real large-scale sys-
tems have been deployed for environment monitoring tasks.
For example, GreenOrbs and CitySee systems [12] have been
built for natural data collection including temperature, hu-
midity, illumination, and carbon dioxide etc. Unfortunately,
extremely large amount of data transmission hinders the ap-
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plicability and the reliability of the large-scale WSNs deploy-
ment. Leveraging the spatial-temporal properties in sensory
data from real deployments, in-network compression is an
essential technique to reduce the amount of data transmission
while preserving relatively high reconstruction accuracy in the
sink [2].

Compressive sensing (CS) based in-network data process-
ing is a promising technique to compress sensory data and
accurately recover it in the sink. In recent years, many CS
based data gathering methods have been proposed to reduce
in-network data transmission cost (e.g., [17]-[19], [29], [30],
[34]). The transmission cost is decided by two factors, each CS
measurement transmission cost and the number of CS measure-
ments. CS measurement transmission cost is mainly decided
by measurement matrix. The sparse ratio of the measurement
matrix determines the number of sensor nodes to participate in
each CS measurement gathering. The more nodes participate
in each CS measurement gathering, the higher transmission
cost will be generated. However, most of the existing CS
based data gathering methods use dense measurement matrix
[18], [19], [29] or sparse measurement matrix [17], [30] to
compress sensory data, which requires large number of sensors
to participate in each CS measurement gathering. It results in
the fact of that the data gathering transmission cost is still very
high. In fact, if measurement matrix is designed according to
the representation basis and sensory data, it can become sparser.
Can we make the measurement matrix become the sparsest?
At the same time, we can find a sparse representation basis.
This sparse representation basis and the sparest measurement
matrix can recover sensory data accurately without adding the
number of CS measurements. If it can be accomplished, the
transmission cost of CS based data gathering can be decreased
significantly.

In this paper, we propose a sparsest random scheduling
for compressive data gathering in large-scale WSNs. In our
scheme, we present a sparsest measurement matrix where each
row has only one nonzero entry. To recover sensory data
accurately and reduce transmission cost, we propose a design
method for representation basis, which is properly generated
according to the sparsest measurement matrix and sensory data.
The contributions of this paper are three folds.

¢ We design representation basis based on measurement
matrix and sensory data in large-scale WSNs, instead
of making measurement matrix satisfy any orthonormal
representation basis. According to this design approach,
we present the sparsest measurement and each CS mea-
surement transmission cost is decreased from O(N) to
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O(log(N)) in multi-hop tree topology sensor networks,
where NV is the number of sensors.

e We carry out a theoretical analysis that our representation
basis can sparsify our sensory data and satisfy the RIP
with the sparest measurement matrix, which guarantees
that sensory data can be recovered accurately with a small
number of CS measurements.

e Through comprehensive experiments with real sensory
data of CitySee, we show our scheme can recover sensory
data accurately. Surprisingly, our scheme outperforms the
dense measurement matrix with DCT basis over 5 dB on
data recovery quality. Simulation results also show our
scheme reduces almost 10x energy consumption com-
pared with dense random projections for compressive data
gathering scheme.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III introduces the basic of
CS theory. Section IV gives an overview of our data gath-
ering scheme in CitySee system. In Section V, we present
the detail of the measurement matrix and representation basis
design. Transmission cost analysis and algorithm implementa-
tion of our data gathering scheme are presented in Section VI.
Section VII reports our experiment and simulation results. We
make a conclusion in Section VIII.

II. RELATED WORK

In this section, we summarize the related work of in-network
compression data gathering. There are many conventional in-
network data compression techniques such as joint entropy
coding (e.g., [10], [23]), transform-based coding (e.g., [1],
[9], [27]) and distributed source coding [26]. Joint entropy
coding and transform-based coding need large amount of data
exchanges among sensor nodes and high computational com-
plexity, which are not suitable for resource-constrained sensor
networks. Although distributed source coding can compress
sensory data without data exchange, it requires the global cor-
relation structure of sensory data as a priori, which is usually
difficult to obtain.

The emergence of CS theory has opened up a new re-
search avenue for in-network compression. For example,
D. Baron et al. [26] proposed distributed CS to compress
multi-signal exploiting both intra- and inter-signal correlation
structures. In [13], [24], Haupt, J. et al. applied CS theory to
single-hop data gathering in WSNss to obtain efficient compres-
sion for network data. In [18], Luo et al. proposed compressive
data gathering based on CS theory to reduce data transmission
cost in large-scale monitoring sensor networks. In [29], [34],
[35], J. Wang et al. extended CS based data gathering to
dual-layer compressed aggregation and adaptive the number
of measurements during the data gathering. These methods
exploited dense measurement matrix to gather CS measure-
ments, the transmission cost of each CS measurement is O(N)
because each row of measurement matrix has O(N) nonzero
entries, where IV is the number of sensors. To recover k-sparse
sensory data, it requires O(k - log(N)) CS measurements. In
[20], J. Luo er al. proposed that applying CS naively may not
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bring any improvement for WSN data gathering and proposed
a hybrid-CS data gathering scheme. The main reason is that
measurement matrix is not sparse enough. In [19], C. Luo et al.
discovered that [I, R] measurement matrix has also good RIP,
I'is M x M identity matrix and R is M x (N — M) dense
random matrix. But each CS measurement matrix transmission
cost is still O(N). In [30], W. Wang et al. proposed sparse
measurement matrix can also obtain the salient information of
compressible signal, each row of it has O(log(N)) nonzero
entries, but it requires O(k? - log(IN)) CS measurements to
recovery k-sparse sensory data. Based on sparse measurement
matrix, Lee. S et al. [17] proposed low coherence projections
for efficient routing, but the proposed routing paths were not
the shortest routing paths, which would incur additional trans-
mission cost.

So, the transmission cost of CS based data gathering
is related to the sparse ratio of measurement matrix and
the required number of CS measurements. In [31], [32],
X. Wu et al. proposed temporal random sampling in one sensor
node to recover the whole temporal signal, but they didn’t
consider spatial signal in large-scale WSN data gathering and
its representation basis is inflexible.

III. BASIC OF COMPRESSIVE SENSING

CS is a new compression and sampling paradigm compared
with traditional compression and sampling paradigm [3], [5],
[11]. CS theory asserts that a relatively small number linear
combination of a compressible or sparse signal can contain
most of its salient information.

We assume that s € RY is a k-sparse signal. If a signal
is k-sparse, it has only k£ nonzero components or (N — k)
smallest components can be ignored. Thus, the information can
be extracted from s by

y=®s (1)

where ® is an M x N measurement matrix, y € RM is mea-
surement vector and M < N. To recover the signal s, two
problems need to be solved: 1) How to design ® such that the
salient information can be extracted from any k-sparse signal?
2) How to design the reconstruction algorithm to recover s
from M CS measurements (M < NN)? For the first problem,
® should satisfy the restricted isometric property (RIP) [7]:

Definition 1 (RIP [7]): A matrix ¢ satisfies the restricted
isometry property of order k if there exists a J € (0,1)
such that

(1= 0p)sl3 < |®s]l3 < (1 + ) |sll3 2)

for all k-sparse vectors s € RY.

Candes, Romberg, and Tao [6] and Donoho [11] have shown
many random matrices satisfy the RIP such as Gaussian identity
distribution matrix, =1 Bernoulli matrix and so on.

For the second problem, the signal s can be recovered via ¢4
optimization as

§=argminls|y st. y=®Ps 3)
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Fig. 1.

Partial deployment area of CitySee system.

If ® satisfies RIP and M > O(k - log(N/E)), then s can be re-
covered successfully with high probability. If the measurement
vector y contains noise, then the signal s can be recovered via

§=argmin|s|j; st [[Ps—y|2<e 4)
S

where € bounds the noise. There already exist many efficient al-
gorithms to solve the above problems such as basis pursuit [7],
orthogonal matching pursuit (OMP) algorithm [28], CoSaMP
[22] and so on.

However, the real sensory signals are almost compressible
signals instead of sparse signal. But a compressible signal can
be transformed into a sparse signal via sparse basis transfor-
mation. For example, a smooth signal x € RY can usually
be transformed into a sparse signal s under discrete cosine
transformation (DCT) basis or discrete wavelet transformation
(DWT) basis. The measurement vector y can be expressed as

y = &x = dUs 4)

where U is a N x NN representation basis. If ®U satisfies
RIP, the sparse signal s can be recovered accurately with high
probability. Then x can be recovered via x = Us.

IV. OVERVIEW

In this section, we will give the overview of our sensory data
gathering scheme. Our scheme is mainly applied to CitySee
system data gathering. CitySee was deployed in an urban area
of Wuxi City, China, which contained thousands of wireless
sensor nodes for monitoring temperature, humidity, light, lo-
cation, and etc [12], [21]. The partial deployment area is shown
in Fig. 1. In CitySee system, each sensor samples once every
10 minutes and sends its sampling value to the sink by multi-
hop routing strategy. We will focus on the monitoring of tem-
perature evolution at a single sink area, as the discussion and
methodology equally apply to the other monitoring parameters
and the whole monitoring area.

Many CS based data gathering techniques were proposed
for reducing the network communication cost (e.g., [17]-[19],
[35]). These techniques assumed that the sensory data has
a good compression performance under the common sparse
presentation basis such as DCT, DWT and etc. However, the
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Fig. 2. Original sensory data analysis. (a) The original sensory data. (b) The

transformed coefficients.

compression performance of CitySee original sensory data is
very poor under these common representation bases. CS is only
suitable for sparse or compressible signal, so these bases are
not suitable for our sensory data. Fig. 2(a) and (b) display
the original sensory data and its transformed signal under
DCT basis and 4-layer ‘haar” DWT basis. It shows that the
transformed signals are not sparse. Simultaneously, Fig. 2(a)
also shows that most of the sensory data changes in a small
range except for a few sensory values.

In order to reduce network transmission cost and improve the
compression of sensory data, a few sensory values that affect
compression performance needs to be removed. In our scheme,
the sensory data are partitioned into two cases to gather them
separately. To facilitate partition different sensory value, we
give two thresholds T'h_max and T'h_main. The sensory data
gathering process is carried out as the following two cases:

Case 1: If sensory value is out of the range of
(Th_min, Th_maz), the sensor node sends it to the sink.
This type of sensory values isn’t taken compression operation
because the proportion of them is relatively small. Even we
perform compression operation for them, the network com-
munication cost reduction is also small. Fig. 2(a) shows that
the number of them is only 12 among 260 sensory values.
This type of sensory values can be considered as sparse signal.
However, CS based sparse signal gathering cannot reduce the
transmission cost compared with non-compression data gath-
ering [20]. So, this type of sensory data is not appropriate for
carrying out CS based data gathering. In our scheme, T'h_min
and T'h_max are set to 10 °C and 50 °C respectively, because
most of the time the temperature of CitySee deployment area
is between 20 °C to 45 °C, such as from April to October. Our
sensory data comes from August. Although the temperature is
usually between —5 °C and 20 °C in the winter, the threshold
values also can be adjusted to meet environment changed. In
addition, Citysee temperature data are mainly used for studying
the growth of plants, most plants do not grow in the winter.

Case 2: 1If sensory value is between Th_min to Th_maz, it
is carried out CS based data gathering. In fact, the compression
performance of sensory data can be improved significantly
when the out of the range of (Th_min,Th_mazx) sensory
values are removed. Fig. 3(a) and (b) show the sensory data
between Th_min to Th_max and its transformed signals
respectively. To simplify the expression, sensory data between
Th_min to Th_max are called normal sensory data. Accord-
ing to Fig. 3(b), it displays the transformed signal is very sparse
under DCT and DWT basis.
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During CS based data gathering, the sparse ratio of measure-
ment matrix determines CS measurement transmission cost. To
simplify the expression, we assume that the monitoring area
contains N normal sensory values, they are denoted by x =
[#1,22,...,7x]T, the measurement matrix is denoted by & =
[1, B2, ..., ¢n]T. The ith CS measurement is represented
as y; = Zf;l ¢i;x;. If ¢;; is nonzero, the jth sensor node
requires to participate in ¢th CS measurement gathering. So,
the greater number of sensor nodes participates in one CS
measurement, the higher transmission cost generates.

Although sparse measurement matrix [30] can reduce single
CS measurement transmission cost, it needs to increase the
additional number of CS measurements. How to make measure-
ment matrix sparser without increasing the additional number
of CS measurements is a big challenge for CS based data
gathering. However, CS theory is focused on minimizing the
number of CS measurements, rather than on minimizing the
cost of each measurement. So, the existing measurement matrix
and representation basis of CS theory are hard to meet wireless
sensory network requirement.

Whether can we make a measurement matrix extremely
sparse where each row has only one nonzero entry? If it can be
implemented, each CS measurement transmission cost can be
reduced to O(log(N)) in multi-hop tree-type topology sensor
network. It is also the minimum transmission cost for single
CS measurement when the data packets route along the shortest
path. To simplify the expression, we call the measurement
matrix with only one nonzero entry in each row as sparsest
measurement matrix. If we can use sparsest measurement ma-
trix for CS based data gathering without increasing the number
of CS measurement as well, we call this method as sparsest
random scheduling for compressive data gathering (SRSCDG).
In our scheme, we design representation basis based on sparsest
measurement matrix and sensory data. Finally, we give the
detail implementation data gathering scheme based on sparsest
measurement matrix.

V. DESIGN OF OUR CS BASED DATA GATHERING

According to CS based data gathering, we know sparsest
measurement matrix can make CS measurement transmission
cost minimal. However, the total transmission cost also relates
to the number of CS measurements. If sparsest measurement
matrix is used for CS based data gathering without increasing
the number of CS measurement as well, the total data gathering

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 13, NO. 10, OCTOBER 2014

transmission cost can be reduced significantly. Thus, we for-
mally define the sparsest measurement matrix ®. as

(i 7) = {0 otherwise ©
where 1 =1,2,---M, j=1,2,--- N, r; represents the inde-
pendent and identically distributed (i.i.d) random index and
r; € [1, N]. Based on the definition of ®., we know . is a
M by N matrix and each row has only one nonzero entry. If
®, is considered as a measurement matrix for CS based data
gathering, then one round of data gathering can be expressed as

Ly (bi €
Ly ¢§ €2

= . | =1 . (7
Ly % TN

where ¢f represents the ith row of ®.. The vector x, is CS
measurement vector and each component of x, is randomly
selected from x. If we exploit x, to recover x based on CS
theory, then the recovery process can be expressed as

§=argmin||slj; st [[PUs—x[3 <e (8)
S

and
x=Us )

where s is the transformed signal under representation basis W,
€ bounds the mount of recovery error and noise in x,, § and X
are the recovery signals for s and x respectively.

Can we make the measurement matrix become the sparsest
without increasing the number of its rows? Now, we explain
why measurement matrix can be the sparsest from the infor-
mation extraction aspect. If sensory data x is sparse under
representation basis W, it can be recovered from a small number
of CS measurements y = &x = ®WUs. The decoding process is
to recover the sparse signal s instead of directly recovering the
sensory data x. The sparse signal s can be recovered because
each component of y contains a part of information of s,
namely, each component of y is a linear combination of s. How-
ever, each component of x is also a linear combination of s.
Components of x and y are both the linear combination of s.
So, if we design or select a suitable representation basis and
make it satisfy RIP with our designed sparsest measurement
matrix, the sparse signal s can be recovered from a part of x.

If ®. can be considered as measurement matrix for CS based
data gathering, we must find a representation basis ¥ and make
it satisfy the following two conditions: 1) W should sparsify
our sensory data and 2) .U should satisfy RIP. In the next
subsection, we give the detail representation basis design.

A. Representation Basis Design

In this subsection, we present a method to establish rep-
resentation basis based on the sparsest measurement matrix
and sensory data. In [6], [11], Donoho et al. proposed that
the partial Fourier coefficient can also recover original signal.
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However, the CitySee sensory data cannot be transformed
into sparse signal under discrete Fourier representation basis.
Fig. 4(a) shows 256 original sensory data at the same sampling
time. Fig. 4(b) displays that the transformed coefficients of
Fig. 4(a) is not sparse under discrete Fourier transform. So,
discrete Fourier transform is not suitable for our monitoring
environment. According to the CS theory, the measurement
matrix is a random matrix and the RIP is also a probability
condition. In other words, if we find a sparsity representation
basis which is similar to a certain random matrix, It maybe
satisfies RIP condition. Then, we present a representation basis
design method based on the correlation of sensory data.

As large-scale WSNss sensory data has strong spatial corre-
lation, it can be obtained via the covariance function. Fig. 5
displays two days temperature sensory data which contain
260 sensor nodes. It illustrates that the sensory data have a
strong correlation. To sparsify the sensory data, the covariance
matrix is a good tool which can make the sensory data decorre-
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lation and concentrate the sensory data into a few components
[16], [25]. We define the covariance matrix as

¥ = E(xx7T) (10)
3] is a real symmetric matrix, it can be expressed as
Y =UAUT (11)

where U is orthonormal eigenvector basis, A is the diagonal
matrix whose diagonal entries are the eigenvalues of 3. We use
W = U as our orthonormal representation basis, then x can be
expressed as

x = Ugs. (12)
If s is sparse and .V satisfy RIP, U can be considered as a

representation basis for ®. and our sensory data. The proofs of
these two conditions are given in the following subsections.

B. Does s Satisfy Sparsity?

In this subsection, we analyze and prove that W« can sparsify
our sensory data. Firstly, we analyze the eigenvalues of our
covariance matrix. In our scheme, we select 289 rounds sensory
data to construct the covariance matrix. Fig. 6(a) shows the
eigenvalues of covariance matrices with different number of
sensors. It illustrates that most of the eigenvalues are almost
close to zero. Fig. 6(b) shows that 90% of the eigenvalues are
less than 0.5. The analysis results indicate that the eigenvalues
are concreted in a few dimensions. Secondly, we prove that s
is sparse according to the analysis results of eigenvalue. We as-
sume W = [1)1, 9, ...,¥y] and A = diag{A1, A2, ..., An}.
Then, 1; is the eigenvector of \; because of > = \Ing\If’l,
1=1,2,...,N.

In order to prove that s is sparse under representation basis
U, we assume that the eigenvalues of covariance matrix are
mainly concentrated in d eigenvalues and A; > Ay > -+ >
Ag > -+ > An. Then Zij\idﬂ A; can be considered as a tends
to zero. If we use § = [sy,52,...,54,0,...,0]T as the estima-
tion of s = [s1, 82, ..., sy]7, then the estimation error can be
calculated as

N N
E(|ls —3[3) =E 2812 =E ngxxTwi

i=d+1 1=d+1
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The eigenvalues are concentrated in a few elements, d relative
N is very much smaller. So, the signal s can be considered as a
sparse signal under representation basis ¥

C. Does .V Obey RIP?

In this subsection, we first give the statistic properties of
W and display that U can be considered a random matrix.
Mean and variance are two important metrics for data statistics.
We calculate mean and variance of each row and column of
®, with N from 80 to 300, N is the dimension of ®.. Fig. 7
displays that the actual percentage of the mean of each row in
the range of (—0.02,0.02) and N times variance of each row in
the range of (—0.05,0.05). Fig. 7 illustrates that the mean and
variance of each row are both tending to the same with high
probability when NV is greater than 100. According to the law of
large numbers, each row of W« can be considered as a random
sequence generated by a random variable. W is generated
by N random variables denoted by &;,&s, - - - &n. These ran-
dom variables have the same numerical characteristics, namely,
E(¢) =0, Var(¢;) = E(€2) = 1/N, (i = 1,2,...,N).

Let ©® = &,V , since the nonzero element of each row of
®. is independent of each other, we can assume that each
row of O is selected independently from W. Meanwhile, ©
can be considered as generated by (i.i.d) random variables
&s€ryy oo Ery, - In the following, we give the definition of
sub-Gaussian and the related Corollary.

Definition 2 (Sub-Gaussian [4]): A random variable ¢ is
called sub-Gaussian if there exists a constant ¢ > 0 such that

222

E(e) < e™2

(14)

holds for all A € R. We use the notation £ ~ Sub(c?) to denote
that ¢ satisfies the above inequality.

Corollary 1 ([33]): If the ith row of © is considered as a
generated sequence by random variable &, (i = 1,2,..., M),
then random variable &, ~ Sub(2).
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Theorem 1 ([33]): Fix 6 € (0,1) and each row of © satisfy
Sub(2), if the number M = O(klog(N/k)), then the probabil-
ity of © satisfy

[ (V]

_lev|

~vIE

(1-9)

<(1+49) (15)
for all N-dimensional k-sparse signal v, it tends to 1.

According to the Theorem 1, we know that W« can sparsify
our sensory data and satisfy the RIP with &, as well.

VI. TRANSMISSION COST ANALYSIS AND
ALGORITHM IMPLEMENTATION

In this section, we first analyze the transmission cost of our
scheme, and then give the algorithm implementation of our
scheme in detail.

A. Transmission Cost Analysis

In this subsection, we analyze transmission cost of our
scheme and compare it with traditional data gathering schemes.
We compare our scheme with three conditional data gathering
schemes: non-compression data gathering scheme, dense ran-
dom projections and sparse random projections for CS based
data gathering schemes. Consider a sensor network of NV sen-
sors with diameter d hops, the average hops of each sensor from
the sink is also d. Every sensor node sends its data packet to the
sink along the shortest path tree. Due to dense measurement
matrix and sparse measurement matrix are suitable for any
orthonormal representation basis, we assume that they have the
same representation basis. The sensory data is k-sparse under
this representation basis. Our scheme uses ¥ as representation
basis, we assume that the sensory data is k’-sparse. Since ¥ is
an orthonormal representation basis, it can also be considered
as the representation basis for dense and sparse measurement
matrix. If U is chosen as the representation basis of dense and
sparse measurement matrix, then k& = £’.

For non-compression data gathering scheme, the average
transmission cost for each sensory value is O(d), N sensory
values need to be sent to the sink. The data collection transmis-
sion cost of one round, T'Chon,_comps 15

TChron,_comp = O(dN). (16)

For dense measurement matrix for CS based data gathering,
each row has O(N) nonzero entries such as [18], [19]. Each
CS measurement transmission cost is O(N) and the sink needs
to gather O(klog(V)) measurements to recovery sensory data.
As a result, the transmission cost of one round data gathering,
TCdrp_C 5,18

TCurp_cs = O (N - klog(N)) = O (kN log(N)).  (17)

For sparse measurement matrix for CS based data gathering
such as [17], [30], the number of nonzero entries of each row
is O(log(N)) and O(k? log(N)) measurements are required to
recover sensory data. But each nonzero entry is random, each
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Fig. 8.
random scheduling.

CS measurement transmission cost is O(dlog(N)). A round
data gathering transmission cost, T'Cy,,, cs, is

TCysp_cs =0 (dlog(N) - k*log(N))

=0 (dk*log*(N)) . (18)

In our scheme, each measurement has only one nonzero

entry, the transmission cost of one CS measurement is O(d).

Our scheme requires O(k’log(N)) measurements to recover

sensory data. As a result, the transmission cost of one round
data gathering, T'Cl,,;, is

TCour = O (d-K'log(N)) = O (dk"log(N)) . (19)

According to the above analyses, we can obtain the follow-
ing two results. (1) TChon_comp = O(AN) < TCyrp cs =
O(kNlog(N) if d < klog(N). (2) Our scheme has the least
transmission cost if &' < k?log(V). Consider the real routing
topology of sensor networks usually adopts multi-hop tree-type
topology, the height of N-sensor routing tree is O(log(N)). So,
dense measurement matrix for CS based data gathering is hard
to reduce data transmission cost. Our proposed representation
basis U has a good compression function for sensory data,
k' is not greater than k?log(N). In [20], J. Luo et al. has
also shown that applying CS naively may not bring any perfor-
mance improvement and proposed a hybrid-CS data gathering
scheme. In hybrid-CS data gathering scheme, if the number
of transmission data packets is larger than CS measurements,
the sensor carries out dense random projections. Otherwise,
the sensor takes non-compression operation which only relays
data packets. Fig. 8 shows four types of data gathering: non-
compression data gathering, dense measurement matrix for CS
based data gathering, hybrid-CS data gathering and sparsest
random scheduling for CS data gathering. In Fig. 8, the black
sensors represent the participation compression sensor nodes
during CS based data gathering and the link labels represent the
number of transmission data packets during a round data gather-
ing. Fig. 8 illustrates that our scheme significantly outperforms
than the other three types of data gathering schemes.

B. Algorithm Implementation

To implement the sparsest random scheduling for compres-
sive data gathering scheme, two aspects need to be considered:
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(1) How to select M random scheduling sensors from N
deployment sensors to meet ®. while keeping each sensor
participates evenly. (2) How to adaptively assign the number of
CS measurement based on recovery error. For the first aspect,
we develop a probabilistic scheduling strategy which can satisfy
the proposed measurement matrix and ensure balanced sensor
participation. For the second aspect, we can use recovery error
of received sensory data to adjust scheduling probability. In the
following part, we implement our sparest random scheduling
for data gathering scheme, which contains two components.
The sink is responsible for sensory data recovery and random
scheduling probability assignment as shown in Algorithm 1.
Each sensor is responsible for sampling and transmitting its
sampling value to the sink shown in Algorithm 2.

Algorithm 1: Sensory data recovery and scheduling prob-
ability assignment/adjustment.

Input : received sensory data x,, representation basis
W, recovery error upper bound €,; and lower
bound €5, probability step length Ap.
Output: recovery sensory data X, sensor scheduling
probability ps;
1 .« 0;
Qp « {i] if z; received };
sensory data */
Jj< 1
foreach i € Q). do
O (j,7) + 1;
Lj%j+h
O« P, x Vg,
8 = CS_Recovery(©, i,);
9 % =T i
10 X, < Xq,;

/* Initializing measurement matrix */
/% Record the index of received

(5]

/* Assign measurement matrix ¥/

[

~

/* Recovery sparse signal */
/* Recovery the entire sensory data */
/% Extract received recovery sensory data */

1 €= 7”37‘2:7";“2 3 /* Recovery error of received sensory data */
12 ps < |Qr|/N; /% Current scheduling probability */

13 if € > €, then

14| ps < ps+Ap;
15 broadcast ps to all sensors;

/* Increase scheduling probability */

16 else if € < ¢;;, then
17 Ps ¢ Ds — Ap; /¥ Decrease scheduling probability */
18 Broadcast p; to all sensors;

9 return X, ps;
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Algorithm 2: Random scheduling data gathering for the
it" sensor.
Input : Random scheduling probability pg
Output: Sensory value x;
1 if z; € (Th_min,Th_maz) then
2 pr < rand(); /* Generate a random probability € (0, 1)
*/
3 if p, > ps then
4 L Send_data(xz;, NORMAL);

5 else
6 | Send_data(z;; ABNORMAL);

In Algorithm 1, the inputs are the received sensory data
Xy, representation basis W, the error upper bound €,; and
lower bound ¢;;,, the scheduling probability step length Ap.
In the initializing data gathering stage, the sensor scheduling
probability can be set to 1. The outputs are the recovery sensory
data x and sensor scheduling probability ps. During the data
gathering, the indices of received sensory data need to be
recorded in €2, which is used for generating ®... € is the recovery
error of received sensory data. If recovery error € is greater than
€45 Which means the number of CS measurements is not enough
to recover the sensory data, the number of CS measurements
needs to increase. If € is less than ¢, we need to decrease the
number of CS measurements to save the resource consumption.
The scheduling probability p, needs to be assigned to each
sensor when the recovery error is out of the range of (¢, €yp).
The scheduling probability will not change frequently because
the sensory data correlation is stable at most time. 1, X, and X,.
represent the recovery signals of u, x, and x, respectively.

In Algorithm 2, each sensor periodically obtains a sampling
value and judges whether it participates in CS based data
gathering or not. If the sensory value is out of the range
(Th_min, Th_maz), then the sensor sends it to the sink along
the shortest routing path. Otherwise, the sensor will generate a
random value p, € (0, 1). If the random value is smaller than
its scheduling probability, the sensor will send its value to the
sink along the shortest routing path. Otherwise, the sensor will
not send its value.

VII. EXPERIMENTAL RESULTS

In this section, we carry out extensive experiments to evalu-
ate the performance of our scheme. In our experiments, the data
set comes from CitySee [12] system which contains more than
one thousand sensor nodes, partial deployment area of CitySee
system is shown in Fig. 1. Each node in our system samples
once every 10 minutes, including temperature, humidity, and
other relevant information. We select many snapshots of real
temperature sensory data to evaluate our scheme. The evalu-
ation process includes three aspects: the sparsity comparison,
the recovery quality of sensory data and energy consumption
of sensor network’s data gathering. Before the experiments,
we give some notations throughout the experiment section as
shown in Table I.

A. The Sparsity Comparison

According to CS theory, the number of CS measurement is
proportional to the sparse level of recovery sensory data. In our
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TABLE 1
NOTATIONS

[ Notation | Description

e Dense random Gaussian matrix

[$:38 Sparsest measurement matrix

\ e Our designed representation basis

W et Discrete cosine transformation basis
W gt Discrete wavelet transformation basis
Wart Discrete fourier transformation basis

Sparse Level

V| g

50 100 150 200 250
Time Sequence

Fig. 9. Sparse level comparison with different representation bases.

experiments, we compare the sparse level of the same sensory
data under W and three other representation bases, W .,
4-layer “haar” W g, and W g7;.

In Fig. 9, we displays the sparse level of the same sen-
sory data under U, Wges, Wqwe, and Wgp;. The experimental
sensory data are 256 sensor nodes with 280 rounds sampling.
According to Fig. 9, it illustrates that W4, cannot transform
sensory data into sparse signal completely. ¥ .4, W g4¢, and W
all can sparsify our sensory data. Fig. 9 also displays that our
designed representation basis W can sparsify our sensory data.
The compression performance of W is only slightly less than
W40+ and W 4, for our sensory data.

B. CitySee Sensory Data Recovery

In this part of experiments, we adopt OMP [28] as CS recov-
ery algorithm. Although there exits many measurement matri-
ces and the most representation bases satisfy the RIP, Gaussian
random matrix is the most common measurement matrix. W ;.;
has the best compression performance compared with 4-layer
‘haar’ W 4,,; and W g4p4. In our experiment, we choose Gaussian
random matrix ®4 and ¥,.; as our comparison measurement
matrix and representation basis respectively.

To evaluate the real sensory data recovery performance of
our proposed . and W, we carry out the experiments from
the following three aspects:

1) Evaluate the sensory data recovery performance using .
and ¥ as measurement matrix and representation basis
respectively.

2) Compare the recovery performance using (®., U) and
(Pg, U4et ) respectively.

3) Given ®., compare the recovery performance using V ;.
and U« as representation basis respectively.
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Fig. 10. Original sensory data and recovery sensory data comparison. (a) The
original sensory data. (b) Recovery sensory data with 160 CS measurements.

In our scheme, the recovery error of sensory data is calcu-
lated as

_ lIx =%l
re —
[l

(20)

In order to evaluate the sensory data recovery performance
more reasonably, we also adopt the peak signal-to-noise ra-
tio (PSNR) as another type of performance metric which is
defined as

2y

2
PSNR =10 -logy, <M“W“l>

MSE

where M SE is the mean squared error and MazVal is equal
to 100 in our experiment. We select 256 normal readings from
the CitySee system as experimental data which is shown in
Fig. 10(a). Fig. 10(b) shows the recovery sensory data using
®. and Vs as measurement matrix and representation basis
respectively with 160 CS measurements. It displays that 160 CS
measurements can recover the sensory data relative accuracy
with €, = 0.0403. Fig. 11 displays recovery error comparisons
with (., ¥¢) and (Pg, Ug4er). Fig. 11 illustrates that the re-
covery performance of (®., U¢) outperforms than (P, U get)
both on €, and PSNR. According to the RIP and sparsity,
the recovery performance of (®., Uy) and (Pg, ¥ 4.) should
be relatively close. But our experimental results shown that
the gap between them almost 5 dB when the number of CS
measurements is greater than 100. CS decoding is the fact that
selection k largest coefficients as the recovery sparse signal,
which may lead to two cases: (1) the recovery error is large
being lack of CS measurements or (2) the recovery error is little
but the recovery result unsuccessful because the recovery signal
is very different from the original signal. But if we have reliable
sensory data as the validation data, we can avoid the case (2) to
a large extent. It also illustrates that our scheme can reduce the
recovery error because the decoder has the reliable validation
sensory data.
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Fig. 12. The recovery performance comparison with (®., V) and
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Fig. 12 shows that the recovery performance comparison
using . as measurement matrix under representation basis ¥
and W 4. It illustrates that the recovery performance of ¥ is
better than W,.; with the same measurement matrix ®.. The
reason is that the production of ®., and ¥ .; does not satisfy
the RIP of CS theory. According to our experimental results, it
indicates that the general representation basis cannot satisfy the
CS requirement with ®.. ¥ can sparsify spatial sensory data
and satisfy RIP with ®., which guarantees sensory data can be
recovered with high probability.

C. Energy Evaluation

To evaluate data transmission cost of our proposed scheme,
we use energy consumption as a metric implementation in
simulation platform OMNeT++ [15]. In our simulations, we
consider a WSN with 500 sensors and a sink deployed in a
1000 m x 1000 m two-dimensional plane. The sink is located
at (0,0) and sensors are uniformly distributed in the monitoring
area. We use bit-hop metric as the energy consumption model
[14] as:

ET?C(lad) =Fejee X I+ €amp X | % d2
ERf(l) =Fepee x 1

(22)
(23)

where Er,(l,d) represents the energy consumption for trans-
mitting a {-bit message over distance d, F'r,(l) represents the
energy consumption for receiving a [-bit message, where F..
is the energy consumption for transmitting or receiving one bit
message, and €, is the transmission amplifier. In the simula-
tion, we set B = 50 nl/bit, €4, = 100 pJ/bit/m2, the length
of data packet is 1024 bits, each sensor has 5000 J energy.
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To simplify our simulation, we ignore the energy consumption
of sampling and data processing, which are relatively smaller
compared with data transmission [2].

Although the energy consumption model is somewhat ideal,
we only use it to evaluate the transmission cost for data
gathering. The bit-hop metric is a favorable metric for such
evaluation. Additionally, all the data gathering schemes im-
plement on the same energy consumption model, it does not
affect our simulation results. To evaluate the performance of
our sparsest random scheduling for compressive data gathering
(SRSCDG), we compare it with two traditional CS based data
gathering schemes: dense measurement matrix for CS based
data gathering (DRPCDG) [18] and hybrid-CS for compressive
data gathering (HCSCDG) [20]. The shortest distance square
spanning tree is used as the routing strategy. We do not consider
sparse measurement matrix ([17], [30]) because it requires
larger number of CS measurements to recover sensory data. We
also assume p is the ratio of the number CS measurements and
the number of all sensors (p = M /N). Since M is proportional
to the sparsity of sensory data, p also can be considered as the
compressibility of gathering sensory data. Fig. 13 shows the
comparison results under DRPCDG, HCSCDG and SRSCDG
with p = 0.05, 0.1, 0.5, respectively. According to Fig. 13, it
displays that energy consumption of DRPCDG is the worst.
Also, the consumption of HCSCDG and SRSCDG are bet-
ter than DRPCDG. The energy consumption of our proposed
SRSCDG significantly outperforms DRPCDG and HCSCDG.
The curves of DRPCDG and HCSCDG is close when the value
p is small. However the curves of HCSCDG and SRSCDG is
also close when the value of p is large. Actually, the value of p
expresses the compressibility of sensory data. If the number of
CS measurements to recover sensory data is small, it means the
number of non-compression sensors is also small in HCSCDG
which leads to the curves of DRPCDG and HCSCDG close.
If the number of CS measurements for sensory data recovery
is large, it means DRPCDG cannot reduce transmission cost
compared with non-compression data gathering. Also, the over-
all performances of HCSCDG and SRSCDG are close to non-
compression data gathering scheme. It also illustrates that any
CS data gathering schemes cannot reduce the data transmission
cost when the compression performance of gathering sensory
data is poor. The simulation result shows that the number of CS
measurement of SRSCDG is nearly 10 times of DRPCDG.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigated compressive sensing based data
gathering in large-scale wireless sensor networks. The tradi-
tional CS based data gathering methods design measurement
matrix based on representation basis, which leads to large of
number of sensors involved in each CS measurement gathering.
In our scheme, we designed representation basis based on mea-
surement matrix and sensory data. According to this design ap-
proach, measurement matrix can be designed according to the
requirement of sensor network, rather than match measurement
matrix into network environment passively. Experiment results
shown our scheme can recover the sensory data accurately.
Simulation results also shown our scheme can significantly
save energy consumption compared with existing compressive
sensing data gathering methods.

Future work will include the following directions. First,
different sensory data can have different spatial correlation.
It is an interesting and important problem to find adaptively
parameter representation basis design. Second, the current work
only considered spatial sensory data. The scheme can be further
extended to spatial-temporal sensory data.
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